import os import requests from bs4 import BeautifulSoup from concurrent.futures import ThreadPoolExecutor from PIL import Image import io def get_html(url, file_name, max_retries=3): session = requests.Session() adapter = requests.adapters.HTTPAdapter(max_retries=max_retries) session.mount("http://", adapter) session.mount("https://", adapter) try: response = session.get(url) response.raise_for_status() return response.text except Exception as e: print(f"Error occurred while fetching HTML from {url}: {e}") raise Exception(f"{file_name}, 获取网页html失败") def download_image(img_url, max_retries=5): """ 通过给定的图片URL下载图片内容。 参数: img_url (str): 图片的URL地址。 max_retries (int, 可选): 下载失败时的最大重试次数。默认为5次。 返回值: bytes or None: 成功下载图片的二进制数据,若下载失败则返回None。 注解: 这个函数通过发送HTTP请求下载图片文件。它使用`requests`库来获取URL返回的响应。 如果下载成功,函数将返回图片的二进制内容(bytes格式)。 如果下载失败,函数将尝试最多`max_retries`次重试,直到成功或达到重试次数上限。 在每次重试之间,函数会打印错误消息来指示重试进度。 如果重试次数用尽后仍然无法下载图片,函数将输出失败消息并返回None。 例子: ``` image_url = "https://example.com/image.jpg" image_data = download_image(image_url) if image_data: # 处理图片数据... else: print("无法下载图片,下载失败。") ``` """ for retry in range(max_retries): try: with requests.get(img_url, stream=True) as response: response.raise_for_status() return response.content except Exception as e: if retry < max_retries - 1: print( f"Failed to download image, retrying ({retry+1}/{max_retries})..." ) else: print("Failed to download image after multiple retries, skipping.") return None def get_img_urls(html_content): soup = BeautifulSoup(html_content, "html.parser") img_tags = soup.find("div", class_="reading-content").find_all("img") img_urls = [] for img_tag in img_tags: img_url = img_tag.attrs["data-src"] img_urls.append(img_url) return img_urls def create_img_obj_list(img_url_list, file_name): img_obj_list = [] for url in img_url_list: obj = dict() obj["file_name"] = file_name obj["url"] = url obj["data"] = None img_obj_list.append(obj) return img_obj_list def download_images_to_img_obj(img_obj): url = img_obj["url"] data = download_image(url) if data is None: file_name = img_obj["file_name"] print(f"{file_name}, 下载图片失败") raise Exception(f"{file_name}, 下载图片失败") img_obj["data"] = data def batch_download_images_to_img_obj_list(img_obj_list): """ 使用 ThreadPoolExecutor 创建线程池,对 img_obj_list 中的每个图片对象调用 set_img_obj_data 函数。 Args: img_obj_list (list): 图片对象列表,每个对象包含图片的数据等信息。 Returns: None """ with ThreadPoolExecutor() as executor: executor.map(download_images_to_img_obj, img_obj_list) def concatenate_images_vertically(img_obj_list): """ 垂直拼接长图片 """ try: # 计算拼接后的长图宽度和总高度 max_width = max( Image.open(io.BytesIO(img_obj["data"])).width for img_obj in img_obj_list ) total_height = sum( Image.open(io.BytesIO(img_obj["data"])).height for img_obj in img_obj_list ) # 创建一张新的长图 long_image = Image.new("RGB", (max_width, total_height), color=(255, 255, 255)) # 依次将图片在垂直方向上拼接起来 y_offset = 0 for img_obj in img_obj_list: img = Image.open(io.BytesIO(img_obj["data"])) img_width, img_height = img.size x_offset = (max_width - img_width) // 2 # 居中拼接 long_image.paste(img, (x_offset, y_offset)) y_offset += img_height return long_image except Exception as e: file_name = img_obj_list[0]["file_name"] print(f"{file_name}, 拼接图片失败:{e}") return None def pre_batch_task(lines): """ 批次任务 """ for line in lines: line = line.strip() # 去掉每行开头和结尾的空白字符 if line: file_name, _, url = line.partition(" - ") # 解析出 HTML 文件名和 URL 地址 print(f"{file_name}, 开始下载") html_content = get_html(url, file_name) img_url_list = get_img_urls(html_content) img_obj_list = create_img_obj_list(img_url_list, file_name) batch_download_images_to_img_obj_list(img_obj_list) long_image = concatenate_images_vertically(img_obj_list) # 垂直拼接长图片 long_image.save(f"imgs/{file_name}.png") # 保存长图到本地 print(f"{file_name}, 完成!!") def read_lines_from_file(task_file): """ 从文件中读取所有行并返回一个包含行的列表。 参数: file_name (str): 要读取的文件名。 返回值: lines (list): 包含文件中所有行的列表。 """ with open(task_file, "r", encoding="utf-8") as file: lines = file.readlines() return lines def process_lines_in_batches(lines, batch_size): """ 将行数据按照指定的批次大小,利用线程池并行处理。 参数: lines (list): 包含所有行的列表。 batch_size (int): 每个批次处理的行数。 """ # 使用 ThreadPoolExecutor 创建线程池 with ThreadPoolExecutor() as executor: # 按照 batch_size 将行分批次处理 for i in range(0, len(lines), batch_size): batch_lines = lines[i : i + batch_size] executor.submit(pre_batch_task, batch_lines) if __name__ == "__main__": task_file = "input.txt" batch_size = 3 # 每个线程处理的行数 lines = read_lines_from_file(task_file) process_lines_in_batches(lines, batch_size) print("finish, 程序结束...")